Performance characteristics of ammonia engines using direct injection strategies

نویسندگان

  • George Zacharakis-Jutz
  • George Elias Zacharakis-Jutz
  • Daniel Attinger
  • Thomas Brumm
چکیده

In this study performance characteristics of ammonia engines using direct injection strategies are investigated. Ammonia is a carbon-free fuel, and thus its combustion does not produce carbon dioxide, a critical greenhouse gas. Ammonia can be produced by using renewable energy sources (e.g., wind and solar) and used as an energy carrier. Recent research also has shown that the efficiency of solar thermochemical production of ammonia can be increased by combining the ammonia solid-state synthesis cycle with hydrogen production. Ammonia is under consideration for a potential storage method for wind energy. Ammonia’s nature as carbon-free and its ability to be renewably produced make it an alternative to fossil fuels. In this study two direct injection strategies are tested and performance data, and exhaust emissions are recorded and analyzed. The first strategy tested liquid direct injection in a compression-ignition (diesel) engine utilizing highly advanced injection timings. Ammonia was used with dimethyl ether (DME) in a duel fuel combustion strategy. Ammonia was mixed with DME prior to injection. DME was chosen as a diesel substitute for its close fuel properties to ammonia. Three ammonia-DME ratios were tested: 100%DME, 60%DME-40%NH3, and 40%DME-60%NH3. Engine speeds of 1900 rpm and 2500 rpm were used based on the operational capability of 40%DME-60%NH3. Operation at 40%DME-60%NH3 required injection timing ranging from 90-340. Highly advanced injection timings resulted in homogeneous charge compression ignition combustion (HCCI). Cycle-to-cycle variations were reduced with increased load. NOx,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2. British Petroleum (BP), “BP energy outlook 2035”, 2014 (January)

In recent years, many efforts have been made to reduce pollution in compression ignition engines. Dimethyl ether is one of the methods to achieve this goal due to its special properties such as high Cetane number and low pollution. Also, one of the parameters that plays an important role in improving combustion and engine performance is fuel injection pressure. In the present study, a numerical...

متن کامل

Emission Reduction Strategies for Small Single Cylinder Diesel Engine Using Valve Timing and Swirl Ratio

Small diesel engines are widely used for commercial vehicle and passenger car applications due to their higher torque requirements, fuel economy, and better thermal efficiency. These engines are exposed to different operating and environmental conditions and hence emissions from these engines are erratic. Strategies are required to enhance performance and reduce engine-out emissions considering...

متن کامل

Dual-Fuelling of a Direct-Injection Automotive Diesel Engine by Diesel-Gas Method

Use of liquefied petroleum gas (LPG) in compression-ignition (C-I) engines has always been considered important in the diesel engineering field. This is due to its easy accessibility and good combustion characteristics. In this paper the application of LPG fuel along with diesel oil in a direct- injection automotive diesel engine is experimentally investigated. In order to convert the pure dies...

متن کامل

Numerically Modeling of Diesel Engine and Analysis the Effects of Double Injection Strategies on Performance and Pollutant Emissions

Modern diesel engines should have higher pollutant emissions standards with better performance and by using split injection strategies which could optimize the air – fuel mixture, this purpose could be achieved. After achieving the successful validation between modeling and experimental results for both single and double injection strategies, for the first time and in this paper, double i...

متن کامل

Theoretical study of the effect of hydrogen addition to natural gas-fueled direct-injection engines

The preparation of air–fuel mixture is considerably dependent on fluid flow dynamics to achieve improved performance, efficiency, and engine combustion in the appearance of flow. In this study, the effects of mixtures of hydrogen and compressed natural gas (CNG) on a spark ignition engine are numerically considered. This article presents the results of a direct-injection engine using methane–hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015